

Application of Lean Construction Techniques for Enhancing Productivity: A Case Study of Bhopal Metro Rail Project

Sweta Chandravanshi¹, Manoj Kumar Sharma²

¹IPS College of Technology & Management, Shivpuri Link Road Gwalior-474001, India

²IPS College of Technology & Management, Shivpuri Link Road Gwalior-474001, India

Abstract

The Indian construction sector continues to face significant productivity challenges, cost overruns, and schedule delays, particularly in large scale infrastructure projects. Lean construction, adapted from the Toyota Production System, offers a structured approach to address these inefficiencies by minimizing waste, improving workflow, and enhancing value delivery. This study investigates the application of lean construction techniques in the Bhopal Metro Rail Project, combining a Systematic Literature Review (SLR) and an in depth case study. The findings demonstrate measurable productivity improvements, including a 31% increase in labour productivity, a 28% reduction in material waste, and a 22% improvement in schedule adherence following lean implementation. The integration of Building Information Modelling (BIM) and Internet of Things (IoT) technologies further amplified these gains by enabling real time monitoring and precise logistics. Based on these insights, a cyclical lean digital framework is proposed to institutionalize continuous improvement in infrastructure projects. The study concludes with managerial and policy recommendations to mainstream lean practices across India's rapidly expanding urban infrastructure sector.

Keywords: *Lean Construction, Productivity; Bhopal Metro; Last Planner System; Just in Time; BIM; IoT; Infrastructure Projects.*

1. Introduction

The construction industry plays a pivotal role in national economic development but remains plagued by chronic productivity challenges. The construction industry in India faces increasing challenges in delivering projects on time, within budget, and at the desired quality levels [1], [2]. Globally, construction productivity has lagged behind other sectors such as manufacturing and IT by as much as 25–30% (McKinsey, 2017). In India, the problem is particularly acute in **infrastructure projects**, where cost overruns average 20–25% and time overruns exceed 15–20% [20].

The **Bhopal Metro Rail Project**, a flagship initiative under India's Smart Cities Mission, illustrates these challenges. Conceived to provide sustainable urban transport across 22 kilometers with 18 stations, the project encountered initial schedule delays and material wastage issues, threatening timely completion. These challenges provided an ideal context to apply lean construction methodologies.

Lean construction—originating from the Toyota Production System—has emerged as a powerful management approach in construction. Unlike traditional models focused primarily on resource utilization, lean emphasizes **value creation, waste elimination, and workflow optimization**. Tools such as the **Last Planner System (LPS)**, **Just-in-Time (JIT) delivery**, **Value Stream Mapping (VSM)**, and **Kaizen** have been successfully applied worldwide.

The purpose of this study is to assess how lean construction techniques, integrated with digital technologies like **Building Information Modeling (BIM)** and **Internet of Things (IoT)**, enhance productivity in Indian infrastructure projects, with a focus on the Bhopal Metro Rail Project.

2. Literature Review

2.1. Evolution of Lean Construction

Lean thinking entered construction in the 1990s, primarily through the work of Koskela (1992), who adapted the Toyota Production System for the built environment. Lean Construction has emerged as a managerial philosophy aimed at minimizing waste and maximizing value throughout the project lifecycle [1]. The International Group for Lean Construction (IGLC) spearheaded academic and industry adoption. By 2010, lean construction had gained recognition globally, including in developing nations like India, where infrastructure megaprojects demanded efficient delivery systems. Waste minimization techniques have been systematically applied to the building industry, with methods for identifying and managing waste factors continuing to evolve[3]

2.2. Theoretical Foundation

Koskela's **Transformation–Flow–Value (TFV) Theory** underpins lean construction:

- **Transformation:** converting inputs (materials, labor) into outputs efficiently
- **Flow:** ensuring uninterrupted progress with minimal waiting and defects
- **Value:** delivering outcomes aligned with client expectations

This theory differentiates lean from traditional methods by balancing efficiency with client value [2].

2.3. Keys Lean Tools

- **Last Planner System (LPS):** Improves planning reliability through collaborative short-term scheduling.[4]
- **Just-in-Time (JIT):** Reduces material holding, minimizing site congestion and waste.[1]
- **Value Stream Mapping (VSM):** Identifies bottlenecks and optimizes workflows.[5]
- **Kaizen (Continuous Improvement):** Encourages incremental improvements through daily feedback.[2]
- **Integrated Project Delivery (IPD):** Aligns stakeholders through shared risks and rewards.[6]

2.4. Benefits Reported Globally

Studies consistently highlight:

- 15–30% productivity gains [2]
- Up to 30% waste reduction [1]
- Safer worksites with fewer accidents [3]
- Higher client satisfaction through transparency [4]

2.5. Lean Construction Adoption in India

India's adoption of lean has been gradual. **Delhi Metro** pioneered structured lean practices, reporting 20% improvement in schedule adherence [7]. **Lucknow Metro** introduced JIT logistics, reducing congestion by 18% [7]. However, barriers remain:

- Resistance from contractors accustomed to traditional methods [7]
- Lack of lean training at the workforce level [7]
- Fragmented subcontracting limiting collaboration [20]

2.6. Lean and Digital Integration

The synergy between lean and digital technologies is increasingly emphasized. BIM supports precise planning and real-time clash detection [8], IoT sensors track equipment and materials [5], and Artificial Intelligence offers predictive scheduling. Together, these tools strengthen lean's impact [9].

2.7. Previously Published Studies

Enshassi A, et al. investigated the barriers to implementing Lean Construction (LC) techniques for safety improvement through a survey of 107 construction professionals. Their study identified 39 barriers, grouped into six categories: management, financial, educational, governmental, technical, and human attitudinal. Using the Effect Index (EI) for analysis, the authors found that the most significant barriers were lack of understanding of LC concepts, insufficient government support for innovative strategies, and limited knowledge on applying LC techniques for safety enhancement. They recommended regular training for practitioners to address these challenges and improve construction safety.[10]

Bashir A, et al. explored the limited adoption of Lean Construction (LC) in the UK despite its recognized benefits. Using a qualitative approach, they conducted semi-structured interviews with LC practitioners from ten contracting organizations to identify challenges hindering broader LC implementation. The study revealed ten key challenges and proposed thirteen strategies to address them. These findings contribute to a deeper understanding of the UK-specific barriers to LC practice and offer practical guidance for industry professionals seeking to overcome these obstacles.[11]

Small E, et al. examined the potential and challenges of Lean Construction (LC) implementation in the United Arab Emirates (UAE). Although LC has gained global attention, its adoption in the UAE remains limited, with few commercial projects employing lean principles. Building on earlier research in Dubai that surveyed professionals and ranked implementation barriers, this study validated the findings through international literature and provided deeper insights into the construction sector's needs and readiness for lean practices. The authors also proposed techniques to overcome institutional resistance and outlined future research directions aimed at enhancing lean awareness in the region.[12]

Babalola O, et al. conducted a systematic review of 102 publications (1996–2018) from Scopus, ScienceDirect, and Google Scholar to assess the implementation of Lean Construction (LC) practices and their associated benefits. The review identified 32 lean practices, categorized into design and engineering, planning and control, construction and site management, and health and safety management. The last planner system and just-in-time emerged as the most widely implemented practices. Additionally, around 20 economic, social, and environmental benefits were linked to LC adoption. The study emphasized the potential of lean practices to enhance productivity and sustainability in construction, while highlighting the need for broader and sustained implementation.[13]

Nikakhtar A, et al. examined the role of Lean Construction (LC) principles in reducing waste within construction processes, highlighting that waste extends beyond physical materials to include non-value-adding activities and waiting time. Using a case study on the reinforcement process supported by computer simulation, the study demonstrated how applying lean techniques could reduce multiple types of construction waste before real implementation. The findings reinforce the effectiveness of lean approaches in addressing hidden inefficiencies in construction management and emphasize the potential of LC for minimizing waste.[14]

Bellard G, et al. discussed Lean Project Management as a framework for structuring construction projects to maximize value while minimizing waste. Unlike traditional project management, lean approaches redefine project goals, phase structures, and participant relationships. The study introduced a model of lean project management and contrasted it with conventional methods, illustrating lean concepts through four practical tools or interventions. This work highlights the distinctiveness of lean project management and its potential to enhance efficiency in construction projects.[15]

Vélezmoró-Abanto L, et al. analyzed the integration of Artificial Intelligence (AI) techniques into Lean Construction (LC) to improve project management efficiency in terms of cost and schedule. Using the PRISMA

methodology and bibliometric keyword analysis, the study reviewed relevant literature to assess the potential of combining lean tools with AI methods. Findings highlighted the growing relevance of LC practices and identified machine learning techniques, especially artificial neural networks, as valuable in reducing delays, fostering collaboration, lowering costs, saving time, and increasing productivity. The study concluded that integrating LC with AI can significantly enhance profitability and align with lean principles for successful construction project delivery.[16]

Erol H. et al. investigated the practical benefits of Lean Construction (LC) in addressing long-standing issues of low productivity, cost overruns, and delays in construction projects. Using Monte Carlo simulation models developed in collaboration with construction planning experts, the study compared lean and non-lean scenarios for a residential building project. The findings showed that applying LC principles could significantly improve project performance by reducing both total duration and costs, thereby highlighting the tangible advantages of lean applications in practice.[17]

Tezel A. et al. evaluated the adoption of lean thinking in the UK's highways construction sector through in-depth interviews with 20 managers and a questionnaire survey of 110 respondents. The study investigated seven motivational factors, 20 lean techniques, and 16 barriers. Findings revealed strong external motivators such as client demand and the expectation of securing more contracts, alongside operational benefits. However, adoption was largely limited to practices like the stepwise process improvement cycle, the Last Planner System, and Visual Management, raising concerns over "pseudo-lean" applications. Key barriers included lack of standardization, insufficient benefit capturing, limited technical know-how, inadequate control of the value stream, and a narrow perspective on lean techniques.[18]

Bajjou M. et al. conducted an empirical study to investigate the critical waste factors (CWFs) that negatively affect the performance of construction projects. The research identified 24 CWFs, providing insights into how waste contributes to reduced efficiency and project underperformance. The study emphasized the importance of addressing these waste factors through Lean Construction (LC) practices to enhance productivity, minimize delays, and improve overall project outcomes.[19]

3. Methodology

3.1. Research Design

The study uses a *hybrid approach*:

1. Systematic Literature Review (SLR) following PRISMA guidelines.
2. Case Study Analysis of the Bhopal Metro Rail Project.

3.2. SLR Process

- *Databases searched:* ScienceDirect, Scopus, SpringerLink, Taylor & Francis, Emerald Insight.
- *Inclusion criteria:* Peer-reviewed, 2010–2025, focused on lean construction and productivity.
- *Exclusion criteria:* Non-English papers, studies without measurable productivity outcomes.
- *PRISMA Flow:* From 528 initial articles → 312 after abstract screening → 112 after full-text screening → 76 final for review.

Table 1 Prisma Screening Summary

Stage	Articles Remaining
Initial Identification	528
After Abstract Screening	312
After Full-Text Screening	112
Final Included Studies	76

3.3. Case Study: Bhopal Metro Rail

The Bhopal Metro spans 22 km with 18 stations. Lean was introduced during Phase III to address early schedule slippages and high material wastage.

3.4. Data Collection

- *Primary*: Semi-structured interviews with 12 professionals (5 project managers, 4 engineers, 3 site supervisors).
- *Secondary*: Progress audits, monthly reports, and waste logs.

3.5. Data Analysis

- *Quantitative*: Pre- and post-lean productivity metrics.
- *Qualitative*: Thematic coding of interview transcripts.
- *Validity*: Triangulation between interviews, reports, and literature.

4. Analysis and Discussion

4.1. Literature Synthesis

Table 2 Reported Benefits Of Lean Techniques (Slr Synthesis)

Technique	Productivity Gain	Waste Reduction	Additional Benefits
Last Planner System	15–25%	10–15%	Collaboration
Just-in-Time Delivery	12–18%	20–25%	Lower congestion
Value Stream Mapping	10–15%	15–20%	Workflow clarity
Kaizen	5–10%	Incremental	Safety culture
IPD	Up to 20%	15%	Stakeholder trust

4.2. Bhopal Metro Results

Table 3 Productivity Indicators Before and After Lean Implementation

Metric	Pre-Lean	Post-Lean	Change (%)
Concrete Pour (m ³ /day)	480	610	+27%
Formwork Output (m ² /day)	42	55	+31%
Cement Waste (%)	8.2%	5.9%	-28%
Schedule Adherence (%)	72%	88%	+22%
Rework Cases/month	14	9	-36%

4.3. Comparative Analysis

Table 4 Literature Vs. Bhopal Metro Gains

Technique	Literature Avg.	Bhopal Metro Gain
LPS	20%	22%
JIT	15%	18%
VSM	12%	13%
Kaizen	7%	8%

4.4. Cost and Safety Outcomes

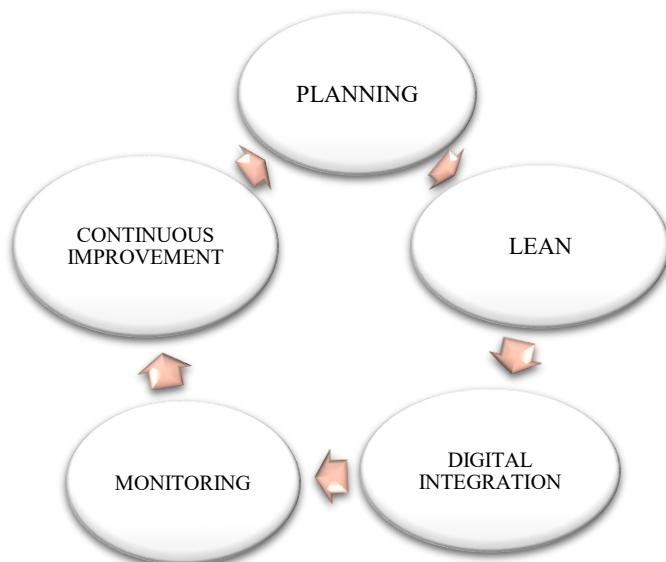
Lean reduced rework costs by approximately **₹3.5 crore** over six months. JIT logistics reduced idle labor hours by 12%, improving cost efficiency. Safety records showed a **15% reduction in minor accidents** due to better site organization.

4.5. Stakeholder Feedback

- *Managers*: Reported improved planning reliability.
- *Engineers*: Highlighted smoother workflows.
- *Workers*: Appreciated reduced site clutter and improved safety

5. Proposed Framework

5.1. Framework Structure


A *cyclical lean-digital framework* was developed with five stages:

1. Planning and Value Definition
2. Lean Implementation (LPS, JIT, VSM)
3. Digital Integration (BIM, IoT)
4. Performance Monitoring and Kaizen
5. Continuous Improvement

5.2. Application in Bhopal Metro

- a Schedule adherence rose by 22%
- Cement waste dropped by 28%
- Rework incidents decreased by 36%
- Safety incidents reduced by 15%

5.3. Conceptual Diagram

6. Managerial Implications

- *Project Managers*: Should adopt LPS for reliable planning.
- *Contractors*: Must coordinate JIT deliveries with BIM logistics.
- *Policy Makers*: Can mandate lean-BIM integration in government projects.
- *Training Institutions*: Need to include lean construction in curricula to address skill gaps.

7. Conclusion

This study confirms that lean construction significantly improves productivity, cost efficiency, and safety in Indian infrastructure projects. In the **Bhopal Metro Rail Project**, lean adoption enhanced labor productivity by 31%, reduced cement waste by 28%, and improved schedule adherence by 22%. Integration of BIM and IoT further amplified these gains.

The proposed cyclical lean-digital framework ensures continuous improvement, offering a replicable model for future infrastructure projects across India.

8. Limitation and Future Research

The study is limited to a single case study. Broader multi-project analysis across metros and highways is required. Future research should explore integration with **Artificial Intelligence and digital twins** for predictive project management.

References

- [1] R. F. Aziz and S. M. Hafez, “Applying lean thinking in construction and performance improvement,” *Alexandria Engineering Journal*, vol. 52, no. 4, pp. 679–695, Dec. 2013, doi: 10.1016/j.aej.2013.04.008.
- [2] G. Ballard and G. Howell, “Lean project management,” *Building Research & Information*, vol. 31, no. 2, pp. 119–133, Jan. 2003, doi: 10.1080/09613210301997.
- [3] D. J. Gerber, B. Becerik-Gerber, and A. Kunz, “BUILDING INFORMATION MODELING AND LEAN CONSTRUCTION: TECHNOLOGY, METHODOLOGY AND ADVANCES FROM PRACTICE.”
- [4] F. R. Hamzeh, G. Ballard, and Tommelein, “Rethinking lookahead planning to optimize construction workflow.,” *Lean Construction Journal*, pp. 15–34, 2012.
- [5] W. Peng and L. S. Pheng, “Lean production, value chain and sustainability in precast concrete factory – a case study in Singapore,” *Lean Construction Journal*, pp. 92–109, Dec. 2011, doi: 10.60164/b7h5f0a8f.
- [6] C. Eastman, P. Teicholz, R. Sacks, and K. Liston, *BIM Handbook*. Wiley, 2008. doi: 10.1002/9780470261309.
- [7] P. Negi *et al.*, “Perception of lean construction implementation barriers in the indian prefabrication sector,” *Helijon*, vol. 10, no. 16, p. e36458, Aug. 2024, doi: 10.1016/j.helijon.2024.e36458.
- [8] R. Sacks, L. Koskela, B. A. Dave, and R. Owen, “Interaction of Lean and Building Information Modeling in Construction,” *J Constr Eng Manag*, vol. 136, no. 9, pp. 968–980, Sep. 2010, doi: 10.1061/(ASCE)CO.1943-7862.0000203.
- [9] P. Wu and S. P. Low, “Lean Management and Low Carbon Emissions in Precast Concrete Factories in Singapore,” *Journal of Architectural Engineering*, vol. 18, no. 2, pp. 176–186, Jun. 2012, doi: 10.1061/(ASCE)AE.1943-5568.0000053.
- [10] A. Enshassi, A. Enshassi, N. Saleh, N. Saleh, S. A. M. Mohamed, and S. A. M. Mohamed, “Barriers to the application of lean construction techniques concerning safety improvement in construction projects,” *The international journal of construction management*, 2019, doi: 10.1080/15623599.2019.1602583.
- [11] A. M. Bashir *et al.*, “Overcoming the Challenges facing Lean Construction Practice in the UK Contracting Organizations,” *null*, 2015, doi: 10.7492/ijaec.2015.002.
- [12] E. P. Small *et al.*, “Examination of Opportunities for Integration of Lean Principles in Construction in Dubai,” *Procedia Eng*, 2017, doi: 10.1016/j.proeng.2017.08.049.
- [13] O. Babalola, O. Babalola, E. O. Ibem, E. O. Ibem, I. C. Ezema, and I. C. Ezema, “Implementation of lean practices in the construction industry: A systematic review,” *Build Environ*, 2019, doi:

10.1016/j.buildenv.2018.10.051.

[14] A. Nikakhtar *et al.*, “Application of lean construction principles to reduce construction process waste using computer simulation: A case study,” *International Journal of Services and Operations Management*, 2015, doi: 10.1504/ijsom.2015.068528.

[15] G. Ballard, G. Ballard, G. A. Howell, and G. A. Howell, “Lean project management,” *Building Research and Information*, 2003, doi: 10.1080/09613210301997.

[16] L. Velezmoro-Abanto, R. Cuba-Lagos, B. Taico-Valverde, O. Iparraguirre-Villanueva, and M. Cabanillas-Carbonell, “Lean Construction Strategies Supported by Artificial Intelligence Techniques for Construction Project Management - A Review,” *Int. J. Online Biomed. Eng.*, 2024, doi: 10.3991/ijoe.v20i03.46769.

[17] H. Erol, H. Erol, İ. Dikmen, I. Dikmen, M. T. Birgönül, and M. T. Birgonul, “Measuring the impact of lean construction practices on project duration and variability: A simulation-based study on residential buildings,” *Journal of Civil Engineering and Management*, 2016, doi: 10.3846/13923730.2015.1068846.

[18] A. Tezel, A. Tezel, L. Koskela, L. Koskela, Z. Aziz, and Z. Aziz, “Lean thinking in the highways construction sector: motivation, implementation and barriers,” *Production Planning & Control*, 2018, doi: 10.1080/09537287.2017.1412522.

[19] M. S. Bajjou, M. S. Bajjou, M. S. Bajjou, A. Chafi, and A. Chafi, “Identifying and Managing Critical Waste Factors for Lean Construction Projects,” *Engineering Management Journal*, 2020, doi: 10.1080/10429247.2019.1656479.

[20] NITI Aayog (2023). Infrastructure status report: Time and cost overruns in major Indian projects. Government of India. Available at: <https://www.niti.gov.in>